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Summary 

We propose a novel mechanism involved in enzyme-catalyzed
coupled reactions in biological systems. It is assumed that an enzyme sets
a constraint on the coupling ratio between the degrees of freedom coupled
in the reaction. We show that this assumption leads to a mixing of free
energy values between the degrees of freedom coupled in the reaction.
This is an interference effect of thermal origin, which shares some
properties with the quantum interference effect. We discuss the possibility
that the energy scale ~kT has an absolute meaning in determining the
magnitude of the thermal interference effect.
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1. Introduction

Coupling is a ubiquitous and important
mechanism employed in many crucial aspects of
the biological processes. The exact nature of this
very important biological process, however, is not
yet known. Recently, through the observation of
the properties of mechanochemical coupling in
muscle contraction (Yanagida et al. 1985, Harada
et al. 1990, Higuchi & Goldman 1991, Ohno &
Kodama 1991, Yasunaga & Wakabayashi 1991,
Lombardi et al. 1992, Irving et al. 1992), a new
question as to the nature of coupling in biological
systems has been brought up. Through the
analysis of this question, we present, in this paper,
a novel mechanism of coupling in biological
systems. We postulate that a 'thermal interference
effect', namely the interference between mutually
inconsistent events coupled through the action of
the enzyme, is involved in the coupled reactions.
This is an effect similar to the quantum interference

effect (see for example, Dirac 1958 or Bohm
1951), but of different physical origin. We discuss
the possibility that, as in the quantum interference
effect, there is an absolute meaning to the scale of
energy ~kT (where k is Boltzmann's constant,
and T is the absolute temperature) in the
mechanism leading to the thermal interference
effect. 

The new question about coupling that has
been brought up through the studies of muscle
contraction can be summarized as follows. 

Under constant temperature and constant
pressure conditions of biological systems, the
Gibbs free energy determines the direction in
which reaction proceeds. Namely, a reaction must
involve a negative free energy change in order to
proceed spontaneously. In coupling, enzyme E
drives a reaction step involving an unfavorable
(positive) free energy change by coupling it to
another step involving a favorable (negative) free
energy change. Let us denote the two coupled
reaction steps as A1→A2 (energetically

unfavorable reaction) and B1→B2 (energetically

favorable reaction). 

Through the action of enzyme E , these
two degrees of freedom become interrelated.
Coupling ratio C is defined as the ratio of the net
occurrence of these two reaction steps (Mogi
1993a). 

C =
occurrence of  A1 → A2

occurrence of  B1 → B2

In the conventional understanding of the

coupled reaction (see, for example, Stryer 1988),
it has been assumed that coupling ratio C is one.
In this situation, it was assumed that when one unit
of reaction A1→A2 occurs, one unit of reaction

B1→B2 also occurs. Namely, the conventional

scheme is 

In coupling, EA1B1 → EA2B2  always occurs

(A)

However, it has been suggested in the
study of muscle contraction and other biological

systems (e.g., Shimizu et al. 1991) that the
coupling ratio is not necessarily one. In particular,
in the study of muscle contraction, coupling ratio
C has been shown to be much larger than one
under certain conditions. This means that the two
reactions A1→A2 and B1→B2 do not always

occur simultaneously. Namely, in view of the
recent experimental evidence coupling should
rather be expressed in the scheme

In coupling, sometimes  EA1B1 → EA1B2   occurs

              and sometimes EA1B1 → EA2 B1   occurs .
(B)

In the new scheme, the conventional
coupling scheme (A) can be considered as a special
case in which the two reactions in scheme (B)
occur simultaneously. 

To illustrate the theoretical problems that
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arise from the above picture of coupling, let us
assume, for example, that the coupling ratio is N ,
where N is some integer larger than 1. The
energetically favorable reaction B1→B2 occurs,

on average, only in one case out of N occurrences
of the energetically unfavorable reaction A1→A2 .

Namely, in N-1 out of N cases, the energetically
unfavorable reaction A1→A2 should occur

without the accompanying occurrence of the
driving reaction B1→B2. We then ask ourselves

how the unfavorable reaction A1→A2 is driven in

the absence of the favorable reaction B1→B2 . To

understand such a mode of coupled reactions, we
need a coupling mechanism in which the
energetically unfavorable reaction can be driven on
the 'credit' that the energetically favorable reaction
would occur in one out of N cases. 

Many hypotheses have been proposed to
explain a 'credit' mechanism such as formulated
above. Storage of the free energy liberated by the
driving reaction B1→B2 in some mode of the

protein structure (thermal ratchet model) has been
suggested as a possible solution to this question
(Feynman et al. 1963, Oosawa 1989, Vale &
Oosawa 1990, Cordova et al. 1992). However,
although this scheme can reproduce the basic
properties of the experimental data, in view of the
rapid decay time of any fluctuation in protein

structure (e.g., Brooks et al. 1988) it is very
difficult to incorporate this model in the realistic
dynamics of protein in water. It may appear that
inertia can drive the unfavorable reaction,
especially when the driven reaction A1→A2 is the

translocation of macromolecules. However, inertia
cannot function as an energy-storing mechanism
because of the low value of Reynolds number for
macromolecules in water (Purcell 1977, Shapere
& Wilczek 1987). The existence of multiple
intermediate states is also unlikely to explain the
observed large values of the coupling ratio in
muscle contraction, as it is unlikely that the
multiple intermediate states can sequentially

assume the alternating conformations of the motor
molecules. 

To conclude, there is a very severe
conceptual difficulty when we try to understand a
coupling mechanism in which the coupling ratio is
not one. In view of the recent experimental
evidence, we must abandon the conventional
scheme, and endeavor to find a coupling principle
which can incorporate the newly revealed nature of
coupling. In particular, we need a 'credit'
mechanism in which the energetically unfavorable
reaction is driven on the 'credit' that the
energetically favorable reaction would occur with a
certain probability. 

In the next section, we propose a coupling
principle which can solve the problem formulated
above.

2.  Coupling ratio constraint
mechanism

In this section, we propose a novel
coupling mechanism (the 'coupling ratio
constraint' mechanism).

Let us denote the two coupled degrees of
freedom as x ( A1→A2 , the energetically

unfavorable reaction) and y (B1→B2 , the

energetically favorable reaction). We formulate the
coupled reaction system as a random walk in a
two-dimensional plane (x, y). First we consider the
situation in the absence of coupling enzyme E. At
each transition time, transition can occur in one of
the 4 directions (1,0), (-1,0), (0,1), (0,-1), with
probabilities v1, v2, u1, u2, respectively.

The normalization condition is 

v1 + v2 + u1 + u2 = 1. 
(1)

In the absence of coupling enzyme E,
there is no correlation between the two degrees of
freedom. Let us assume that transition A1→A2

involves a free energy change of ∆Ex>0, and
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transition B1→B2 involves a free energy change

of ∆Ey<0.

The transition probabilities v1, v2, u1, u2

and free energy gradients ∆Ex, ∆Ey characterize

the uncoupled system. We have the Arrhenius
relations

v1

v2

= exp −
∆Ex

kT
 
 
  

 
 

u1

u2

= exp −
∆E y

kT

 
 
 

 
 
 

.
(2)

If we take an appropriate origin, the state of
the system represented by the coordinate (x,y) has
the free energy value of E(x,y), where

E(x, y) = x∆Ex + y∆Ey .
(3)

When we introduce enzyme E, the two
degrees of freedom are correlated through the
action of the enzyme. As a result, it is expected that
the transition probabilities v1, v2, u1, u2 and the

free energy gradients ∆Ex, ∆Ey are transformed.

Let us write the transformed transition rate
constants and free energy gradients as v1', v2',

u1', u2' and ∆Ex,' ∆Ey'. The essence of the

coupling mechanism is reflected in the
transformation

(v1,v2,u1,u2,∆Ex , ∆Ey )uncoupled → ( ′ v 1, ′ v 2, ′ u 1, ′ u 2,∆ ′ E x ,∆ ′ E y )coupled

. (4)

We will refer to the transformed energy

gradients ∆Ex' and ∆Ey' as the effective energy

gradients. The effective energy gradients are
expected to be relevant only as far as the dynamical
behavior of the system is concerned (e.g., in

determining the kinetic rate constants). Since an
enzyme cannot change the free energy balance of a

system, the actual free energy gradients ∆Ex and

∆Ey are expected to be invariant. Therefore, there

would be, in general, a discrepancy between the
effective and actual energy gradients.

Note that for reasons that will be clarified
later, the arguments developed in this section are
considered to be applicable only to the cases where

the absolute values of the energy gradients ∆Ex

and ∆Ey are smaller or comparable to ~kT (see

sections 3 & 4). When the absolute values of ∆Ex

and ∆Ey are larger than ~kT, a modification of the

scheme is needed, as discussed in section 4.
The novel coupling mechanism that we

propose in this paper is based on the following two
fundamental assumptions.

(1) Through the action of the enzyme, the ratios of
the forward and backward transition probabilities
in the coupled degrees of freedom are fixed at a
constant value. As a result, the coupling reaction is
effectively constrained to proceed in a single
(average) degree of freedom (the coupling ratio
constraint hypothesis, Fig.1). 
(2) Although there is, in general, a discrepancy
between the effective and actual free energy
values, they take the same value along the average
degree of freedom specified by the coupling ratio
constraint. 
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x

y
average  degree of freedom

actual  degree of freedom

actual  degree of freedom

transition in the x- degree of freedom

transition in the y- degree of freedom

S

E

Fig.1 The coupling ratio constraint
mechanism

In the coupling ratio constraint mechanism, it is
assumed that the coupling ratio (the ratio of the
transition rate constants in the coupled degrees of
freedom) is fixed at a constant value by the
enzyme. The actual transitions, however, continue
to occur in two dimensions. In this figure, the
average degree of freedom is shown by the bold
line. The transitions of the system are restricted, on
average, to this single degree of freedom. An
example of a sequence of the actual transitions is
represented by the directed edges. When an edge
has two arrowheads, the occurrence of a reversible

transition is suggested. 

Now let us obtain the transformed
transition probabilities and energy gradients based
on the above assumptions.

The normalization condition is again

′ v 1 + ′ v 2 + ′ u 1 + ′ u 2 = 1 .
(5)

The coupling ratio C defined in the
previous section can be written as

C =
′ v 1 − ′ v 2
′ u 1 − ′ u 2 .

We express the average degree of freedom
specified by the coupling ratio constraint by the
'coupling ratio vector' (p,q), where 

p2 + q2 = 1 . 

In the following discussion, we assume,
without a loss of generality, that p, q >0.

The coupling ratio constraint hypothesis
can be written as 

′ v 1
′ u 1

=
′ v 2
′ u 2

=
p

q .
(6-A)

Under condition (6-A), the coupling ratio
takes a constant value of 

C =
′ v 1 − ′ v 2
′ u 1 − ′ u 2

=
p

q .
(6-B)

Note that condition (6-A) is a stronger
requirement than condition (6-B). This stronger
requirement is necessary and appropriate for two
reasons. The first reason is that if we require only
condition (6-B), we would need one more equation
to determine the transformed rate constants and
free energy gradients. In other words, we are left
with one free parameter, and there is no natural
physical or biological requirement that would
provide the necessary equation. The second reason
is that requirement (6-B) is a generalization of the
principle of detailed balancing (Bridgman 1928) in
that both the forward and backward reactions
proceed in the same average degree of freedom. 

The random walk is now on average
restricted in the direction of the coupling ratio
vector (p,q). In other words, there is effectively
only one degree of freedom. The requirement that
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the effective free energy and the actual free energy
take the same value along the average degree of
freedom can be written as 

p∆Ex + q∆Ey = p∆ ′ E x + q∆ ′ E y .
(7)

The Arrhenius relations for the transformed
transition probabilities and free energy gradients
are

′ v 1
v2

′ = exp − ∆E x
′

kT

 

 
  

 

 
  

′ u 1

u2
′ = exp −

∆Ey
′

kT

 

 
 
 

 

 
 
 

.
(8)

From relations (5), (6-A) and (7)-(8), the
effective free energy gradients are obtained as a

single value ∆E'.

∆ ′ E x = ∆ ′ E y = ∆ ′ E =
p∆Ex + q∆E y

p + q

(9)

The transformed transition probabilities are
obtained as

′ v 1 = pe− ∆ ′ E 

kT

p + q( ) 1 + e− ∆ ′ E 
kT

 
 
  

 
 

′ v 2 =
p

p + q( ) 1+ e−
∆ ′ E 

kT
 
 
  

 
 

′ u 1 = qe−
∆ ′ E 

kT

p + q( ) 1+ e− ∆ ′ E 

kT
 
 
  

 
 

′ u 2 = q

p + q( ) 1 + e−
∆ ′ E 

kT
 
 
  

 
 

. (10)

Equations (9) and (10) give transformation
(4), realized through the coupling ratio constraint
mechanism. 

It is interesting to consider the implications
of formula (9). Recall that we have assumed that

∆Ex>0 and ∆Ey<0. The transition in the x

degree of freedom cannot proceed by itself.
Through the 'coupling ratio constraint' of (6-A),
the free energy gradients in the two coupled
degrees of freedom are 'mixed' into a single value

of ∆E'. As long as the condition 

∆ ′ E =
p∆Ex + q∆Ey

p + q
< 0

is satisfied (i.e., if the coupling ratio is not very
large), the transition in the x- degree of freedom
would be driven by an effective free energy

gradient of ∆E'. In this way, the negative free

energy change ∆Ey accompanying the favorable

transition B1→B2 is used to drive the unfavorable

reaction A1→A2. This is a 'free energy mixing'

effect, which can reproduce the essential features
of a coupling reaction for which coupling ratio C
is not one.

The effective energy value of the state (x,y)
is now given as 
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′ E (x, y) = x∆Ex
′ + y∆Ey

′

= (x + y)
p∆Ex + q∆Ey

p + q .
(11)

We see that the question formulated in the
previous section of how the enzyme can establish a
'credit' mechanism is now answered. Namely, in
the above scheme, the unfavorable reaction A1→

A2 is driven on the 'credit' that the favorable

reaction B1→B2 would, on average, occur in

one out of C cases. We also see that there is a
'thermal interference effect' involved in our
scheme. The 'thermal interference effect' is
formulated as the interference between two
mutually inconsistent events that are coupled
through the action of enzyme E. In our scheme,
the two events 

EA1B1 → EA1B2

and 

EA1B1 → EA2B1

are mutually inconsistent. However, through the
action of the enzyme, these two inconsistent events
are coupled, and the free energy gradients
accompanying these events 'interfere' with each
other. As a result, we obtain a single effective free
energy gradient (11) which is common for these
two mutually inconsistent events. This is a novel
feature of the 'coupling ratio constraint'
mechanism.

As a concrete example, let us consider the
sliding movement of actin filament driven by the
hydrolysis of ATP observed in muscle contraction.
It has been experimentally demonstrated that
several elementary 'working strokes' are
conducted during the hydrolysis of one ATP
molecule (Lombardi et al. 1992). The free energy
liberated by the hydrolysis of ATP under
physiological conditions is about 12 kcal/mol
(Shriver 1984) or 20 kT per molecule at room

temperature (~300K). If we assume, for example,

that the 'load' ∆Ex is 3 kT , and the coupling ratio

is 4, the effective free energy gradient ∆E' will be -
1.6 kT. Therefore, each 'working stroke' would
be driven by a constant effective free energy
gradient, regardless of the particular time at
which the hydrolysis of ATP is completed. This
picture is compatible with the smooth sliding
movement of actin filament observed in in vitro
motility assays (Ishijima et al. 1991, Harada et al.
1990). 

Let us verify that the energy balance (i.e.,
the change in the Gibbs free energy) is always
negative, as is required by the second law of
thermodynamics. We assume that after n steps of
random walks, the system has undergone a
transition of (x(n), y(n)). The energy balance U(n)
(change in the Gibbs free energy) for the coupled
reaction is defined as 

U(n) = x(n)∆E x + y(n)∆E y . 
(12)

The average value of the energy balance is
then calculated as 

U(n) = x(n) ∆Ex + y(n) ∆Ey

= n( ′ u 1 − ′ u 2)
p

q
∆Ex + ∆E y

 
 
 

 
 
 

= −n
1 − e−

∆ ′ E 

kT

1 + e−
∆ ′ E 

kT

∆ ′ E 
. 

(13)

We see that the average value of the energy
balance is always zero or negative, regardless of

the value of the effective free energy gradient ∆E'.
Therefore, in our scheme, the second law of
thermodynamics is not violated, and there is no
Maxwell's demon (Maxwell 1871) at work.
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3. Statistical properties of
difference between effective and

actual free energy values

In the previous section, we presented the
'coupling ratio constraint' mechanism which can
explain the basic properties of a coupled reaction
where the coupling ratio is not one. We formulated
the model in terms of two different concepts of free
energy values, namely, the effective and actual free
energy values. We postulated that the effective
energy values are relevant when we consider the
dynamical behavior (the kinetic rate constants, etc.)
of the system. The actual free energy values, on
the other hand, are assumed to be relevant when
we consider the energy balance. In the 'coupling
ratio constraint' mechanism, there is, in general, a
discrepancy between the effective and actual free
energy values. The difference between the effective
and actual free energy values is a novel feature of
the 'coupling ratio constraint' mechanism. In the
conventional scheme of coupled reactions, there is
no discrepancy between the effective and actual
free energy values (see, for example, Mogi
1993a). 

The question then arises as to the origin of
the difference between the effective and actual free
energy values. Since the difference between the
two free energy values can ultimately be only
accounted for by the heat bath, it is reasonable to
assume that the difference between the effective
and actual free energy values is provided
temporarily by the thermal fluctuation. Namely,
we assume that the coupling ratio constraint
mechanism works by utilizing a temporal energy
difference (i.e., the difference between the
effective and actual free energy gradients) provided
on loan from the heat bath in the form of the
thermal fluctuation. 

In consolidating the physical validity of the
'coupling ratio constraint' mechanism, the
statistical properties of the scheme are expected to
be important. In particular, if the difference
between the 'effective' and 'actual' free energy
values is to be provided by the thermal fluctuation,

then it would have to satisfy certain conditions in
accordance with the statistical properties of the
thermal fluctuation. Let us therefore check if the
statistical behavior of the difference between the
'effective' and 'actual' free energy values is
compatible with the assumption that its origin is the
thermal fluctuation. 

Let us again begin with the assumption that
after n steps of random walks, the system has
undergone a transition of (x(n), y(n)). The
transition of the system (x(n), y(n)) can be
decomposed into a superposition of the coupling
ratio vector (p,q) and a unit vector (-q,p)
perpendicular to it. 

x n( ), y n( )( ) = a(n)(p,q) + b(n)(−q, p)

(14)

We have

a(n) = px(n) + qy(n)

b(n) = −qx(n) + py(n) .
(15)

The average values of a(n) and b(n) are
obtained as 

a(n) = p ′ v 1 − ′ v 2( )n + q ′ u 1 − ′ u 2( )n =
1

p
′ v 1 − ′ v 2( )n

b(n) = 0 .
(16)

The standard deviation of b(n) is related to
the standard deviations of x(n) and y (n) as 

σb( n)
2 = q2σ x ( n)

2 + p2σ y ( n)
2

,
(17)

where the standard deviations on the right side are
given as
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σ x (n )
2 = n ′ v 1 + ′ v 2( ) ′ u 1 + ′ u 2( ) + 4n ′ v 1 ′ v 2

σy ( n)
2 = n ′ u 1 + ′ u 2( ) ′ v 1 + ′ v 2( ) + 4n ′ u 1 ′ u 2 . 

(18)

Using these relations, and making use of
(10), the standard deviation of b(n) is obtained as

σb( n) = n
pq 1 + e− ∆ ′ E 

kT
 
 
  

 
 

2

+ 8pqe− ∆ ′ E 

kT

p + q( ) 1 + e− ∆ ′ E 

kT
 
 
  

 
 

.
(19) 

Let us now examine the statistical
properties of the difference between the effective
energy value E' (11) and the actual energy value
E (3). If the system has undergone a transition of
(x(n), y(n)), the difference between the effective
energy value E'(x(n), y(n)) and the actual energy
value E(x(n),y(n)) is given as 

δE(n ) = ′ E (x(n),y(n)) − E(x (n),y(n))

= x (n)∆Ex
′ + y(n)∆Ey

′ − x (n)∆E x + y (n)∆Ey( )
= (py(n) − qx(n))

p + q
∆Ex − ∆Ey( )

= b (n)

p + q
∆Ex − ∆E y( )

(20)

The average value of δE(n) is therefore

δE(n) = b(n)
p + q

∆Ex − ∆E y( )
= 0

(21)

Namely, there is, on average, no
discrepancy between the effective and actual free
energy values. This is in accordance with the
assumption that the origin of the difference
between the effective and actual free energy

gradients is the thermal fluctuation. Note also that
this result is guaranteed by the condition of (7). 

Using (19), we obtain the standard

deviation for δE(n) as 

σδE ( n) = n(∆Ex − ∆Ey )
pq 1+ e− ∆ ′ E 

kT
 
 
  

 
 

2

+ 8 pqe− ∆ ′ E 

kT

p + q( )2
1 + e −∆ ′ E 

kT
 
   

  

(22) 

A problem arises when we examine the
property of formula (22). From the nature of
thermal fluctuation, the probability of the

occurrence of a fluctuation of the scale ~∆E is
expected to scale as 

~ e− ∆E

kT

(23)

However, the fluctuation in the difference
between the effective and actual energy values

δE(n) (22) for the coupled reaction does not scale
as in condition (23). It is seen, for example, that
the fluctuation given in (22) increases linearly with

the absolute values of ∆Ex and ∆Ey when the

effective energy gradient ∆E' is ~0. This situation
is clearly incompatible with the assumption that the
origin of the difference between the actual and
effective energy values is the thermal fluctuation.
This is the 'fluctuation problem'. 

We therefore postulate that there is some
mechanism that restricts the 'thermal interference'
effect so that the 'fluctuation problem' disappears.
One possibility would be that the coupling
constraint mechanism as developed in the previous
section is valid only when the conditions 

∆Ex <~ kT   and   ∆Ey <~ kT

(24)

are satisfied. In this picture, the 'thermal
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interference effect' would be prominent only when
the conditions in (24) are satisfied. 

We conclude from the argument developed
in this section that there is a mechanism which
restricts the occurrence of 'thermal interference' in
accordance with the free energy change involved.
It is to be noted that the situation is similar to the
case of quantum interference, where the
interference is restricted within the energy scale of
~h. However, in the case of 'thermal interference'
the role of scale ~kT is expected to be more
complicated, as will be discussed later.

4. Absolute meaning of scale ~kT

In the previous section, we saw that the
coupling ratio constraint mechanism introduced in
this paper does not on average violate the second
law of thermodynamics. However, we have seen
that the energy fluctuation is expected to become

too large when the energy gradients ∆Ex and ∆Ey
become large compared to the energy scale ~kT.

In this section, we show that if we
introduce an absolute meaning to scale ~kT and
restrict the 'thermal interference' within this energy
scale, we can solve the 'fluctuation problem'.

Let us write down again the equations that
determine the transformed rate constants and free
energy gradients 

( ′ v 1, ′ v 2 , ′ u 1 , ′ u 2 ,∆ ′ E x , ∆ ′ E y )coupled

in the 'coupling ratio constraint' mechanism. 
Namely,

′ v 1 + ′ v 2 + ′ u 1 + ′ u 2 = 1

′ v 1 − ′ v 2( ) ∆ ′ E x − ∆E x( ) + ′ u 1 − ′ u 2( ) ∆ ′ E y − ∆E y( ) = 0

′ v 1
′ v 2

= e−
∆ ′ E x
kT

′ u 1
′ u 2

= e−
∆ ′ E y

kT

(25)

We solve equations (25) taking the effective

free energy gradients ∆Ex,' ∆Ey' as given.

We then obtain

′ v 1 =
e− ∆ ′ E x

kT 1− e−
∆ ′ E y

kT
 
 
  

 
 ∆E y − ∆ ′ E y( )

W

′ v 2 =
1 − e−

∆ ′ E y
kT

 
 
  

 
 ∆ Ey −∆ ′ E y( )
W

′ u 1 =
e−

∆ ′ E y
kT 1 − e−

∆ ′ E x
kT

 
 
  

 
 ∆ ′ E x −∆ Ex( )

W

′ u 2 =
1− e−

∆ ′ E x
kT

 
 
  

 
 ∆ ′ E x −∆Ex( )
W ,

(26)

where 

W = 1 + e −
∆ ′ E 

x

kT
 
 
  

 
 1 − e−

∆ ′ E y
kT

 
 
  

 
 ∆E y −∆ ′ E y( ) + 1 − e −

∆ ′ E 
x

kT
 
 
  

 
 1 + e−

∆ ′ E y
kT

 
 
  

 
 ∆ ′ E x −∆ Ex( )

. 

We now introduce an absolute meaning to
scale ~kT and restrict the 'thermal interference'
within this energy scale. In order to achieve this,
we define scale function F, which is assumed to
satisfy the following conditions. 

(1) F is a monotonously decreasing function of
the absolute values of the free energy gradients

∆Ex and ∆Ey. 
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∂F

∂ ∆E x

< 0

∂F

∂ ∆E y

< 0

(2) F tends to 1 as both |∆Ex| and |∆Ey|

approach zero.

∆Ex → 0

∆E y → 0

lim F = 1

(3) F tends to zero as |∆Ex| and |∆Ey|

become large. 

∆Ex →∞
lim F =

∆E y →∞
lim F = 0

(4) The characteristic energy scale of function F
is ~kT.

An example of scale function F that
satisfies the above four conditions would be

F = e−
∆Ex

2 +∆ Ey
2

4 kT( )2 .
(27)

We assume that the effective free energy

gradients ∆Ex' and ∆Ey' depend linearly on scale

function F,

∆ ′ E x = ∆Ex + F ∆ ′ E − ∆Ex( )
∆ ′ E y = ∆Ey + F ∆ ′ E − ∆E y( ) ,

(28)

where ∆E' is the effective energy gradient (9)
derived in the coupling ratio constraint mechanism
of section 2. 

In (28), scale function F can be considered
to be the measure of the extent to which the
coupling ratio constraint (and the thermal
interference effect) (6-A) holds. When F=1, the
effective energy gradients in the x- and y- degrees
of freedom are given by the single value of E', and
there is maximum thermal interference effect.
When scale function F=0, there is no change in the

energy gradients, and there is no thermal
interference effect. In addition, the thermal
interference effect is prominent only in the energy
scale of <~kT. Namely, scale function F
introduces an absolute meaning to scale ~kT, and
restricts the thermal interference effect within this
energy scale. 

Under the assumption of (28), the standard

deviation for δE(n) is obtained as 

σ δE( n) = nF

∆E x −∆ E y( ) pq 1− e −
2 ∆ ′ E x

kT
 
   

  1− e−
2∆ ′ E y

kT
 
 
  

 
 + 4p 2q2 e−

∆ ′ E x
kT 1 −e −

∆ ′ E y
kT

 
 
  

 
 

2

+e −
∆ ′ E y
kT 1−e −

∆ ′ E x
kT

 
   

  
2 

 
 

 

 
 

p + q( ) p 1 + e −
∆ ′ E x
kT

 
 
  

 
 1− e−

∆ ′ E y

kT
 
 
  

 
 + q 1 −e −

∆ ′ E x
kT

 
 
  

 
 1+ e−

∆ ′ E y

kT
 
 
  

 
 

(29)

Note that σδE(n) is proportional to scale

function F. We see that σδE(n) now tends to zero

when the absolute values of the energy gradients

|∆Ex| and |∆Ey| become large. This is in

accordance with the assumption that the difference
between the effective and actual free energy values
is provided by the thermal fluctuation.

In conclusion, we have seen that if we
introduce an absolute meaning to scale ~kT, we can
make the coupling ratio constraint mechanism
reasonable in its fluctuation behavior. The thermal
interference effect would then be prominent only in
the energy scale of <~kT. 

Let us note, however, that at the present
stage, it is premature to discuss the nature of scale
function F in a more exact manner. It is expected
that there are some complications, as discussed in
the next section.

5.  Discussions

In this paper, we proposed a coupling
mechanism which can explain the basic features of
coupling observed in biological systems. 
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We argued that in considering the
mechanism of enzyme coupled reactions, it is
important to take into consideration the
experimental observation that the coupling ratio is
not necessarily one. The importance of this kind of
coupling mode (loose coupling) has already been
pointed out (Oosawa & Masai 1982, Oosawa &
Hayashi 1983). 

We have assumed that the action of the
enzyme can be stated in the condition that the
coupling ratio is fixed at a constant value (the
coupling ratio constraint mechanism). We have
shown that this assumption successfully explains
the transduction of free energy in a coupled
reaction where the coupling ratio is not one. It is
interesting to consider the enzymatic mechanisms
that may underlie such a constraint on the coupling
ratio. In particular, condition (6-A) should reflect
some symmetry in the reaction space of the
coupled reactions imposed by the enzyme, and it is
of much interest to consider the molecular
mechanisms which may be involved.

From the analysis of the scheme that we
presented in this paper, we can make the following
predictions about the nature of mechanochemical
coupling in muscle contraction (Mogi 1993b).

(1) ATP is not necessarily hydrolyzed when one
working stroke occurs. 
(2) When ATP is not hydrolyzed, the chemical
state of myosin is the same before and after the
working stroke.
(3) The sliding of actin filament is uniform
regardless of the particular time at which the
hydrolysis of ATP is completed.
(4) The multiple working strokes during the
hydrolysis of ATP is driven by exactly the same
amount of free energy change. 
(5) The number of intermediate states involved in
coupling can be much smaller than the number of
working strokes conducted per ATP hydrolyzed.

These predictions can be tested in future
experiments to verify the validity of the scheme
presented in this paper.

The coupling mechanism we introduced in
this paper shows a 'thermal interference effect', in

analogy with the quantum interference effect. The
basic features of our model that lead to the 'thermal
interference effect' can be summarized as follows.

(1) A stochastic process in two degrees of freedom
is restricted,on average, to one degree of freedom,
through the 'coupling ratio constraint' imposed by
the enzyme. 
(2) The actual transitions, however, continue to
occur in two degrees of freedom. 
(3) The 'discrepancy' between the average single
degree of freedom and the actual two degrees of
freedom leads to an interference between the two
coupled degrees of freedom.

It is to be noted that the logical structure
leading to the 'thermal interference effect' is similar
to the logical structure leading to the quantum
interference effect. Several authors have pointed
out the possible connection between the quantum
and stochastic processes (e.g. Barnes & Silverman

1934, Nelson 1966, Nelson 1967).
However, it should be stressed that the

'thermal interference effect' that we proposed here
is independent of the quantum interference effect.
Limited cases of quantum mechanical effect are
observed in enzyme kinetics (e. g., electron
tunneling (de Vault 1984), and tunneling of
hydrogen atoms (Cha et al. 1989)). However,
since the degrees of freedom in our model are
actually the 'degenerate' expressions for many
internal degrees of freedom, our system is too
'macroscopic' for any quantum processes to take
effect. Therefore, the 'thermal interference effect'
that we proposed in this paper is of purely
stochastic character.

In quantum mechanics, an absolute
meaning is given to the size of the system (Dirac
1958). Namely, the quantum interference effect
occurs only when the scale of the system involved
is of the order of Planck's constant h. We have
suggested that there is a similar absolute meaning
to energy scale ~kT in the thermal interference
effect. Namely, if we assume that the thermal
interference effect is prominent only when the
energy scale involved in coupling is of the order of
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~kT, we can solve the 'fluctuation problem'. 
It should be noted, however, that it is, at

present, not clear how scale function F is exactly
given as a function of the energy gradients
involved in the coupled reaction. In muscle
contraction, the free energy change accompanying
the phosphate release step (the step considered to
be essential in mechanochemical coupling) is about
7 kcal/mol (Shriver 1984) or 12 kT per molecule
at room temperature (~300K). If scale function F
decreases rapidly in energy scale >~kT , the thermal
interference effect involved in mechanochemical
coupling under physiological conditions would be
small. However, experimental evidence in vivo
(Higuchi & Goldman 1991, Lombardi et al. 1992)
demonstrates that the coupling ratio is large under
physiological conditions, suggesting the existence
of a substantial thermal interference effect. One
possibility which we did not discuss in detail in
this paper is that scale function F may depend
critically only on the positive (unfavorable) free

energy gradient ∆Ex . Another possibility is that

scale function F may depend on coupling ratio C.
It would be at the present stage premature,
however, to discuss the exact nature of scale
function F. 
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