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1. Introduction

The cortical circuit is activated spontaneously even when there
is no or little sensory input. From the empirical point of view,
spontaneous neural activities (Arieli et al., 1995, 1996; Tsodyks
et al., 1999; Kenet et al., 2003) and behaviors (Maye et al., 2007)
represent the most salient and interesting differences between the
biological brain and the artificial computer, supporting flexible and
dynamic perception of the environment. On the larger cortical
scale, the existence of the ‘‘default’’ system has been suggested to
play an important role in the functionality of the brain, in which

baseline activities are sustained by specific cortical areas (Raichle
et al., 2001; Vincent et al., 2007). At the scale of local networks, the
‘‘ongoing activities’’ exhibit complex spatio-temporal patterns that
switch between a set of intrinsic cortical states (Tsodyks et al.,
1999), reflecting the overall cortical architecture. Kenet et al.
(2003) observed the ongoing activities in the visual cortex of
anesthetized cats using voltage-dependent optical imaging and
found that the ongoing activities went through cortical states
coincident with orientation columns.

There are two possible basic mechanisms underlying the
ongoing activities and their transitions (Goldberg et al., 2004). The
first assumes that the ongoing activities are driven by cortical noise
and are merely the manifestations of the dynamics of a single
external background state (single-state hypothesis). The second
assumes that the ongoing activities reflect the specifics of internal
cortical interaction, with the cortical state wandering through a
series of intrinsic states as a result (attractor-state hypothesis).
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A B S T R A C T

Spontaneous neural activities in the cerebral cortex exhibit complex spatio-temporal patterns in the

absence of sensory inputs [Arieli, A., Shoham, D., Hildesheim, R., Grinvald, A., 1995. Coherent spatio-

temporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit

recording in the cat visual cortex. J. Neurophysiol. 73, 2072–2093; Arieli, A., Sterkin, A., Grinvald, A.,

Aertsen, A., 1996. Dynamics of ongoing activity: explanation of the large variability in evoked

cortical responses. Science 273, 1868–1871], wandering among the intrinsic set of cortical states

[Tsodyks, M., Kenet, T., Grinvald, A., Arieli, A., 1999. Linking spontaneous activity of single cortical

neurons and the underlying functional architecture. Science 286, 1943–1946; Kenet, T., Bibitchkov,

D., Tsodyks, M., Grinvald, A., Arieli, A., 2003. Spontaneously emerging cortical representations of

visual attributes. Nature 425, 954–956]. Elucidating the nature of such spontaneous activities is one

of the most intriguing challenges in the effort to understand the computational principles employed

by the brain. The precise mechanism behind these salient phenomena, however, is not known. Here

we model the ongoing dynamics of generic neural networks with attractor states using a

conductance-based neuron model. Our realistic modeling shows the existence of up-states and

down-states in the membrane potential, where the up-states exist as spatially clustered patches

moving within the network. Our analysis shows that up-states are sustained by the balance between

excitatory and inhibitory inputs. Synaptic depression and depolarization-dependent potassium

channels can cause the transitions from the up-states to down-states by affecting the dynamics in

differential manners. The velocity of patches depends on the firing frequency of excitatory neurons

affected by contributing factors. These results suggest that the switching dynamics can be produced

by the interactions within the local network, revealing the constraints on the nature of autonomous

dynamics within the cortex.
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Theoretical studies show that there is a trade-off between
mechanisms that support the single-state hypothesis and those
that support the attractor-state hypothesis. In the case of the
single-state hypothesis, the ongoing activities are driven by
cortical noise external to the network in question. The membrane
potentials of neurons in the simulation rise transiently by the
noise, and fall according to the decay time constant of the
membrane potential, characterized by a fast transition (<100 ms).
The correlation of membrane potential over space tends to be
small, since the interactions within the local cortical network are
weak. Cai et al. (2005) constructed a large-scale neural network of
the visual cortex. They controlled the coupling strength of long-
range connection and reproduced the ongoing activities with
transient strong spatial correlation. They suggested that the
ongoing activities in visual cortex could be accounted for by
mechanisms other than those based on the attractor-state
hypothesis. Specifically, they introduced the scenario of an
intermittent desuppressed state (IDS), which is a dynamic state
of high conductance, strong inhibition, and large fluctuations that
arise from intermittent spiking events that are strongly correlated
in time as well as in orientation domains, with the correlation time
of the fluctuations controlled by the NMDA decay time scale. In the
case of attractor hypothesis, on the other hand, the ongoing
activities are sustained by recurrent inputs within the network,
where the spatial correlation of membrane potential tends to be
large. In a system characterized by the attractor hypothesis, the
time scale of transition tends to be long (>100 ms), due to the time
required to break the stability of the up-state.

Spontaneous neural activities involving the up-states and the
down-states are ubiquitously found in the biological brain. During
the naturally occurring slow wave sleep (SWS) in non-anesthetized
cats, there are oscillations (<1 Hz) between the depolarized and
hyperpolarized phases. In the up-states, neural activities are
sustained by strong recurrent excitation balanced by the inhibition
involving some intrinsic channels. In the down-states, a majority of
cortical neurons are hyperpolarized, possibly caused by the
synaptic depression and the depolarization-dependent potassium
channels (Compte et al., 2003; Bazhenov et al., 2002; Hill and
Tononi, 2005). Depolarization-dependent potassium channels
have been shown to be essential in reproducing the down-states
(Compte et al., 2003; Hill and Tononi, 2005).

Incorporating the up-states and down-states as significant
ingredients is compatible with the attractor-state hypothesis in
which the up-states could be sustained by recurrent cortical
interactions. Such a model needs to reproduce two properties of
spontaneous activities. The first is that the neural activities have
patch-like spatial correlation, reflecting the cortical architecture.
The second is that the neural activities exhibit transient changes,
characterized by time scales corresponding to the physiological
data.

Here we hypothesized that the switching between the cortical
states of spontaneous ongoing activities in visual cortex is the
result of the transition dynamics between the up-states and down-
states. We investigate the transitions within the ongoing dynamics
in a generic network by combining the biophysical neuron model
with the Mexican-hat type interaction (i.e., excitation dominating
on the short spatial range followed by inhibition on the longer
range), incorporating synaptic depression and depolarization-
dependent potassium channels. In the local circuitry of primary
visual cortex (V1), the Mexican-hat type interaction causes
recurrent interaction leading to cortical states selective to
orientations (Ben-Yishai et al., 1995; Ernst et al., 2001). The
synaptic depression and the depolarization-dependent potassium
channel cause the transitions from the up-states to the down-
states.Our simulation shows that the transition velocity of ongoing
activities in the visual cortex can be reproduced by adjusting the

parameters of synaptic depression and depolarization-dependent
potassium channels, despite the general tendency of slow
transitions in neural network models based on the attractor-state
hypothesis. The necessary fine-tuning of parameters involved puts
considerable constraints on the makeup of the network. We
discuss the differential effects of synaptic depression and
depolarization-dependent potassium channels on the ongoing
activities. The velocities of traveling waves are rate-limited by the
transition from the up-state to the down-state, contrary to
previous models (Compte et al., 2003; Bazhenov et al., 2002;
Golomb and Ermentrout, 2001, 2002) in which the transition from
the down-state to the up-state is rate-limiting. Finally, we suggest
to test the relevance of mechanisms based on the attractor-state
hypothesis for biological networks such as the primary visual
cortex by adjusting the parameters of synaptic depression and
depolarization-dependent potassium channels.

2. Methods

We used Hodgkin–Huxley equations similar to those described
by Compte et al. (2003). The pyramidal neurons were modeled as
consisting of two compartments, the soma and the dendrite. The
spiking currents INa and IK were located in the soma, together with
a leak current IL, a fast A-type K+ current IA, a non-inactivating slow
K+ current IKS and a depolarization-dependent potassium current
IKNa. The dendrite contained a high threshold Ca2+ current ICa, a
Ca2+-dependent K+ current IKCa, a non-inactivating (persistent) Na+

current INaP, an inward rectifier (activated by hyperpolarization)
non-inactivating K+ current IAR. The depolarization-dependent
potassium channel appears to cause the termination of the
depolarized phase of the slow oscillation (Sanchez-Vives and
McCormick, 2000). This channel is activated by the influx of
sodium ion that accumulate during the period of depolarization
and spiking.

Interneurons consisted of a single compartment, with spiking
currents INa and IK, and a leak current IL. These parameters were
given explicit treatment within the dynamics described by the
equations.

Excitatory synaptic current consisted of an AMPA-mediated
current and an NMDA-mediated current (Jahr and Stevens, 1990;
Wang, 1999). Inhibitory synaptic current was modeled as a GABA-
mediated current (Wang, 1999). A short-term synaptic depression
was introduced for pyramidal-to-pyramidal recurrent excitatory
connections (Tsodyks and Markram, 1997; Abbott et al., 1997). The
synaptic depression reduces the synaptic current in response to the
contiguous spikes of presynaptic neurons and recovers it in the
absence of presynaptic activities.

The initial values for membrane potentials were randomly
distributed around the mean values of�50 mV and�60 mV for the
excitatory and inhibitory neurons, respectively, with a range of
�10 mV. No delay was explicitly assumed in the transmission
between the neurons.

For further details about the models used in the simulation,
refer to the supplementary material (Text S1).

The generic network consisted of 2304 pyramidal neurons and
576 interneurons. The pyramidal neurons were arranged on a
regular square grid (Fig. 1(c)). Inhibitory neurons were positioned
on every second grid points, half a grid out of alignment from
excitatory neurons. The network had a periodic boundary
condition, leading to a 2D torus topology. The excitatory and
inhibitory synaptic connections were given by a Gaussian
distribution. Following previous works (Ben-Yishai et al., 1995;
Ernst et al., 2001; Crook et al., 1998), we assumed that the
excitatory and inhibitory synaptic connections induce lateral
interactions having a Mexican-hat type shape. Standard deviation
of the Gaussian was set to be 2 grids and 4 grids for the excitatory
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(sex) and inhibitory (sinh) synapses, respectively. The number of
presynaptic neurons was set to be constant. For pyramidal and
inhibitory neurons, the number of presynaptic excitatory neurons
was 28, while that for presynaptic inhibitory neurons was 4. As a
result of the assignment process following the Gaussian distribu-
tion constrained by the fixed number of presynaptic neurons, the
number of postsynaptic neurons had some degrees of variance in
the process of random selection for the target neurons. For the
pyramidal neuron, the number of post-synaptic pyramidal neurons
was 28 � 3 while that for inhibitory neurons was 7 � 1.7. For the
inhibitory neuron, the number of post-synaptic pyramidal neuron
was 16 � 2.9 and that of inhibitory neurons was 4 � 1.9.

The model was implemented in a C++ code and simulated using
a forth-order Runge-Kutta method with a time step of 0.06 ms.

3. Results

The synaptic depression and the depolarization-dependent
potassium channels are two possible candidates for the mechan-
ism that causes the transition from the up-state to the down-state.
The activation of depolarization-dependent potassium channel
results in the hyperpolarization of excitatory neurons (Compte
et al., 2003; Hill and Tononi, 2005). Therefore we tested two
conditions. Firstly, we simulated the network with the synaptic

depression only (condition1). Secondly, the depolarization-depen-
dent potassium channel was introduced to the network in addition
to the synaptic depression (condition 2).

First we describe the simulation based on condition 1. Since the
reversal potential and peak conductance of the leakage current is
distributed randomly (see Text S1), some pyramidal neurons are
spontaneously active with low firing rates (0.2 � 0.4 Hz). This
arrangement is based on the observation of spontaneously firing
activities even after blocking the glutamatergic excitatory post-
synaptic potentials in in vitro experiments (Sanchez-Vives and
McCormick, 2000). This is the only source of spontaneous activity
in this simulation.

In condition 1, when a random initial condition was given,
spontaneously active neurons fired together occasionally, which
triggered a cascade of recurrent excitation that locally brought the
network into the firing regime of the up-states (see Text S5). The
local Mexican-hat type interaction between excitatory and
inhibitory neurons generated a spatially heterogeneous (patchy)
distribution (Fig. 2(g)). After the network went into the steady
state, the patches of up-states started to move (Video S16, http://
www.qualia-manifesto.com/Video_S16.mov). The membrane
potential showed a robust oscillation (see Text S10). The
distribution of the histogram of the membrane potential of
excitatory neurons in the steady state remained essentially

Fig. 1. (a) Distribution of presynaptic excitatory neurons as ‘‘seen’’ from an excitatory neuron. Gray scales represent the average distribution of excitatory neurons. The scale

bar represents the probability values between 0 and 1.0. Open circles represent the typical actual distribution of excitatory neurons. (b) Presynaptic inhibitory neurons ‘‘seen’’

from an excitatory neuron. Gray scales represent the average distribution of inhibitory neurons. The scale bar represents the probability values between 0 and 0.2. Open

circles represent the typical actual distribution of inhibitory neurons. (c) The network architecture. Filled circles represent the excitatory neurons. The open circles represent

the inhibitory neurons. (d) A snapshot of the membrane potentials of the soma in the excitatory neurons. (e) A snapshot of the membrane potentials of the soma in the

excitatory neurons after spatial interpolation. The black lines represent the borders between up-states and down-states. The centroids of the patches are represented by the

symbols ‘‘�’’.
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invariant (Fig. S12). An approximately constant ratio of the
population is found to be in the up-state (definition of up-state
and down-state given below). In the steady state, the inhomo-
geneity introduced by random distribution of leakage currents is
averaged by the network interaction, while the fluctuations of
patch dynamics are affected by cortical interaction.

To extract and visualize the patches of activities, membrane
potential of each neuron was averaged with the neighboring eight
neurons (Fig. 1(e)). The Mexican-hat type interaction generated

regions of positive and negative spatial correlation (Fig. 3(b)). If we
assume that the ratio (in terms of distance) of positive and negative
regions is 1:1 as suggested by the data, the ratio (in terms of areas)
of the positive and negative regions, each represented by
concentric circles, is 1:3. As an estimate based on this result, we
defined the first upper quartile of population in the distribution
over the membrane potential value range as belonging to the up-
state, while the remaining population was judged to be in the
down-state (Fig. 2(a) and (b)). This distinction was then used for
the visualization of the patches and the calculation of moving
velocities for the centroids of the patches. This distinction is
invariant over time (Fig. S13).

In our simulation, there are no clearly distinctive peaks in the
membrane potential distributions of individual neurons (Fig. S14).
Since there is no a priori reason why a particular threshold value
should be adapted for the border between the up-state and the
down-state, the definition above is in essence arbitrary. Notwith-
standing this reservation, the dynamics of the network is found to
be different for the upper and lower regions of the membrane
potential, with the threshold defined above as the effective border.

The activities of the synaptic currents and intrinsic channel
currents have different modes for the up-states and down-states
(Fig. 2(c) and (d)). In the up-state, the AMPA-mediated, NMDA-
mediated, and GABA-mediated currents are activated (Fig. 2(c)).
The intrinsic channel currents, the non-inactivating slow K+

current IKS, and a non-inactivating (persistent) Na+ current INaP,
both of which are voltage-dependent channels, also get activated.
In addition, the Ca2+-dependent K+ current IKCa becomes open.

In the down-state, the number of excitatory synaptic inputs are
smaller than that for the up-state (Fig. 2(e)). However, the
inhibitory synaptic inputs are as active as in the up-state, which is
caused by the Mexican-hat type interaction (Fig. 2(e)). The inward
rectifier non-inactivating K+ current IAR (which is activated by
hyperpolarization) is also activated.

Synaptic depression is induced in the excitatory synaptic
connections between excitatory neurons. In the up-state, the
excitatory synaptic current gradually decreases as the neurons
keep firing, which in turn causes a decrease in the firing frequency.
There exits a point where the balance between the recurrent
decrease of excitatory synaptic input and the constant inhibitory
synaptic input is broken (Fig. 3(a)–(i)). The term of voltage-
dependence in the NMDA-mediated current, which is drastically
reduced as the membrane potentials decrease, also contributes to
the switching from the up-state to the down-state.

To investigate the robustness of the observed behavior of the
system, we modified the following parameters: a ¼ ðg0NMDAEE

=gEE
AMPAÞ=ðgEE

NMDA=gEE
AMPAÞ ¼ ðg0NMDAEI=g0AMPAEIÞ=ðgEI

NMDA=gEI
AMPAÞ, which

changes the strength of NMDA-mediated current, and b ¼
g0AMPAEI=gEI

AMPA which affects the strength of inhibitory feedback.
In all conditions, gEE

AMPA was kept constant. Namely, g0NMDAEE ¼
a gEE

NMDA, g0AMPAEI ¼ b gEI
AMPA, and g0NMDAEI ¼ a b gEI

NMDA.
As a measure of the heterogeneity between the up-states and

the down-states, the spatial correlation coefficients between the
membrane potentials of excitatory neurons were calculated. The
spatial correlation for the patches of up-state is found to depend on
the strength of NMDA-mediated current (Fig. 3(b) and (c)).

The parameter b controlled the strength of the inhibitory
feedback. When b was large, the strength of inhibitory feedback
became correspondingly large, and the spatial correlations
decreased (Fig. 3(c)). On the other hand, when the inhibitory
feedback became smaller, the network came close to an over-
excited ‘‘epilepsy’’ state, with the spatial correlation becoming
smaller.

The moving velocity was calculated for the trajectory of the
centroid of the patches in the network (Fig. 1(e)). Here, a patch was
defined as the cluster of connected up-states. The average moving

Fig. 2. (a) The membrane potential of a soma in the pyramidal neuron before (black

trace) and after (blue trace) spatial interpolation. The threshold between the up-

state and down-state is shown in the red trace. (b) A typical time course of the

transition between the up-state and down-state of a neuron. (c) A typical time

course of the synaptic current of GABA (blue trace), AMPA (red trace), and NMDA

(black trace). (d) A typical time course of all intrinsic currents except for INa and IK in

excitatory neurons. (e) A typical count of excitatory and inhibitory synaptic spikes.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.)

T. Yanagawa, K. Mogi / Neuroscience Research 64 (2009) 177–184180
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velocity of the patches was found to depend on the firing
frequencies and the modes of synaptic depression. The moving
patches repeatedly went through the process of generation and
disappearance, while the ratio of the neural population in the up-
state was roughly preserved (details described below and in the
supplementary online material).

Here’s a qualitative description of what is typically observed in
the simulation. A patch moves continuously, being affected by and
influencing in turn the motion of the surrounding patches. During
its existence, the moving velocity has a certain degree of variation.
When a patch is ‘‘stuck’’ with the surrounding patches, it slows
down. Sometimes such a ‘‘traffic jam’’ can cause the disappearance
of a patch. When a space is created in the vicinity of a patch, it
‘‘moves’’ for that space with an accelerated speed. There is the
tendency that after the disappearance of a patch, the nearest patch
splits into two patches, one of which moves for the space made
vacant by the disappearance. At present, we are not aware of any

physiological data that correspond to these observed phenomena
in the simulation.

Fig. 3(d) shows the relation between the lifetime of each patch
and the distance traveled. A series of centroids at different times
are regarded as belonging to one patch trajectory within the range
of its spatio-temporal continuity. The split of a patch into two
initiates a new series of trajectory. The average velocity is
calculated for a single trajectory of each patch thus defined.

In our simulation, the values of parameters sex and sinh affect
the size of patches. Changing the values of sex, sinh and the network
size while keeping other parameters fixed resulted in changes of
the patch sizes and their transition velocities. The transition
velocity of the patches is an important parameter to be compared
with the physiological data. The velocity of a patch increases
linearly, following an increase of the patch size (see Supplementary
data, Text S2). The dynamics on which we focused in this study do
not acutely depend on the number of neurons contained in the

Fig. 3. (a) A typical time course of the average membrane potential of the soma of excitatory neurons and the average count of synaptic excitatory and inhibitory spikes when

the neuron goes under the transition from the up-state to the down-state. Time bin is 1.5 ms. (a-1) represents condition1 (synaptic depression only). (a-2), (a-3), and (a-4)

represent condition 2 (synaptic depression and depolarization-dependent potassium channels), with the following parameters (a-1) a = 1, b = 1, Pv = 0.3 (a-2) a = 1, b = 1.33,

Pv = 0 (a-3) a = 1, b = 0.8, Pv = 0.3 (a-4) a = 1, b = 1.33, Pv = 0.5 and IKNa = 0. These parameter values are selected so that the firing rates of excitatory neurons become�10 Hz. (b)

The average correlation coefficient of the membrane potential between neurons as a function of distance. Parameter a = 0.5, 1, and 2 (b = 1). (c) Correlation coefficient at the

distance of 1 grid for some values of parameters a and b. (d) The distance traveled as a function of the lifetime of patches with a = 1 and b = 1. The straight line depicts the result

of linear regression. (e) The average firing rate of excitatory neurons and the average moving velocities for some values of parameters a and b (Pv = 0.3). (f) The average firing

rate of excitatory neurons and the average moving velocities for some values of a and Pv (b = 1). (g) The average firing rate of excitatory neurons and the average moving

velocities for some values of a and Pv (a = 1) in condition 2 (synaptic depression and depolarization-dependent potassium channels). (h) The moving velocity as a function of

the average firing rate of excitatory neurons for some values of parameters a and b with Pv = 0.1, 0.3, and 0.5 in condition 1 (1) and condition 2 ((2) and (3)). IKNa = 0 in (3).

T. Yanagawa, K. Mogi / Neuroscience Research 64 (2009) 177–184 181
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patch, but rather on its diameter defined by the length of sex and
sinh (Fig. S4). The patch diameter, 12 grids in our simulation,
roughly corresponds to the 1 mm size of a column in the biological
network (Tsodyks et al., 1999). The total size of the model network
thus roughly corresponds to �4 mm � �4 mm.

An increase in parameter a and a decrease in parameter b led to
the increase in both the firing rate and the moving velocity
(Fig. 3(e)). When the synaptic depression parameter Pv, (the rate of
decrease in the current after a spike) was made larger while the
firing rate was kept small, the velocity of the patch became larger
(Fig. 3(f)). Fig. 3(h) shows the relation between the firing rate and
the transition velocity for the patches in the parameter space. The
transition velocity is observed to become faster as the firing rate
and the synaptic depression parameter Pv become larger.

To the best of our knowledge, there are no physiological data
explicitly addressing the traveling velocity of ongoing activities
resulting from switching cortical states. Based on the available
data, we estimate the traveling velocity as follows. The decay
constant of autocorrelation function calculated from the time
series of correlation coefficients between the evoked map and
single frames from spontaneous activities is 80 ms (Kenet et al.,
2003). When approximated linearly, the time in which the
correlation becomes zero is 127 ms (80 ms divided by 0.63). This
estimated time would be shorter than the actual time since the
autocorrelation function is convex downwards. If we assume that
the patch sweeps an area corresponding to a column of 1 mm in
diameter, and that the cortical states would have undergone the
transition from the up-state to the down-state or vice versa in that
time, the traveling velocity would be 7.9 mm/s. We use this value
as a rough estimate of the velocity of traveling waves in vivo.

In an effort to match the physiological value for the traveling
velocity of the patches estimated above, we conducted further
simulations with condition 2, where depolarization-dependent
potassium channels were introduced in addition to synaptic
depression. Along with the addition of depolarization-dependent
potassium channels to the network, which enhances the inhibition
effect in proportion to firing rate during the up-state, some
parameters were changed from condition 1. Firstly, the perme-
ability of the leak current IL was reduced by decreasing the
conductance and increasing the reversal potential of the leak
current. This change effectively increases the influx of the
potassium current during the down-state and functions to shorten
the duration of the down-state, preventing the network from being
in the down-state overall by the effect of IKNa. Physiologically, this
arrangement corresponds to the blocking of leakage currents
arising from the increase of neuromodulators such as acetylcholine
in the transition from the sleeping state to awake state
(McCormick, 1992). Secondly, the inward rectifier non-inactivating
K+ current IAR was set to be zero, as it lengthens the duration of the
hyperpolarization in the down-state. The effect of IAR would
become otherwise stronger in the existence of IKNa, forcing all
neurons to the down-state. Thirdly, the conductance of non-
inactivating (persistent) Na+ current INaP was made larger, making
it easier for IKNa to break the balance between the excitatory and
inhibitory currents.

Typical dynamics of the ongoing activity in condition 2 is shown
in Fig. S18 and Movie S17 (http://www.qualia-manifesto.com/
Video_S17.mov). The membrane potentials become variable in
condition 2, due to the effect of depolarization-dependent
potassium channels causing a strong hyperpolarization (Fig. S13
(b)). This situation makes the definition of up-state and down-state
adopted for condition 1 impractical, making the border unstable in
its designated properties. In condition 2 therefore, the border
between the up-state and down-state was set at a constant value of
membrane potential,�65 mV (Fig. S14 (b)), which was found to be
effective in extracting the centroids of patches.

The decay of membrane potential in the transition from the up-
state to down-state became faster when the depolarization-
dependent potassium channels were incorporated (condition 2)
compared to the situation with synaptic depression only (condi-
tion 1) (Fig. 3a). These results suggest that depolarization-
dependent potassium channels are more effective than synaptic
depression in terminating the up-states. In the presence of
depolarization-dependent potassium channels, the firing rate
and the velocities of the patches became smaller as the synaptic
depression parameter Pv, became larger (Fig. 3(g)).

Finally, Fig. 3(h) shows that the velocities of patches are larger
in the presence of synaptic depression and depolarization-
dependent potassium channels than those in the presence of
synaptic depression only. The firing rate was modified by
manipulating the parameter b, the amplitude of inhibitory
feedback to excitatory neurons. The patch velocity in the presence
of depolarization-dependent potassium channels (condition 2) is
closest to the physiological data (with a maximum velocity of
�8.0 mm/s). As parameters IL, IAR and INaP were modified along
with the introduction of depolarization-dependent potassium
channels in condition 2, the effect of these parameter changes
alone was checked by setting the value of IKNa to zero. As can be
seen from Fig. 3(h), these changes in parameters by themselves
cannot make the velocities comparable to the physiological level.

4. Discussion

In this study, we constructed a network of spiking neurons with
up-states and down-states in the presence of synaptic depression
and depolarization-dependent potassium channels. We have
described some robust properties of the ongoing activities
characterized by transitions between cortical states. Our study
focused on the nature of the mechanism involved in the ongoing
activities exhibited in, e.g., the primary visual cortex (Arieli et al.,
1995, 1996; Tsodyks et al., 1999; Kenet et al., 2003).

The results reported here describe the properties of a generic
neural network. The architecture in our model has an isotropic
local connectivity which follows a Gaussian distribution. Several
evidences suggest that such a rudimentary architecture can
actually be regarded as a founding basis for the biological neural
network. Although functional maps are organized at a fine scale in
the primary visual cortex (V1) (Tsodyks et al., 1999), it is known
that cortical neurons have isotropic local connectivity even at the
pinwheel centers (Marino et al., 2005). A network model of V1 with
isotropic connectivity have been shown to exhibit orientation
selectivity (Ernst et al., 2001). Based on these evidences, we
suggest that our present model reproduces some of the basic
properties of functionally organized biological neural networks
such as V1. The dynamics of specific neural network architecture in
the brain is to be studied on top of these basic findings.

Patchy activities are observed in physiological conditions
(Tsodyks et al., 1999; Kenet et al., 2003). The transition of the
patches to neighboring spaces observed in the simulation is
consistent with the physiological data which suggest that the
ongoing activities have a tendency to make transitions to the
cortical areas representing neighboring angles (Kenet et al., 2003).

At present, the exact relation between the traveling wave
measured in the cortical slices (Petersen et al., 2003; Sanchez-
Vives and McCormick, 2000) and the switching of ongoing
activities in V1 (Tsodyks et al., 1999; Kenet et al., 2003; Goldberg
et al., 2004) is not known. In the model studies, if the network has
no Mexican-hat type interaction, the transition velocity is known
to depend on the transition from the down-state to the up-state
(Compte et al., 2003; Bazhenov et al., 2002; Golomb and
Ermentrout, 2001, 2002). We have shown here in a generic neural
network model that when the network has a Mexican-hat type
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interaction, the process of transition from the up-state to the
down-state sets a limit to the transition velocity, as the patch
cannot start to move if there is no synaptic depression (see Fig. 3(f),
except for Pv = 0). There is no significant effect of noise from
spontaneously firing neurons on the transition. The rate-limiting
significance of the transition from the up-state to the down-state
rather than that from the down-state to the up-state in
determining the velocity of traveling waves is one of the novel
aspects in the present model. In models based on the attractor
hypothesis studied previously (e.g., Cai et al., 2005), the introduc-
tion of synaptic depression has not been shown to result in a
significant effect. Hill and Tononi (2005) did not explicitly quantify
the effect of synaptic depression on the traveling wave velocity of
ongoing spontaneous activities. In our model, the decrease in
synaptic current by the synaptic depression and the resulting
breakdown of the up-states is instrumental in realizing the moving
patches of activities, as bistability has been introduced in the
membrane potential through intrinsic ion channels.

As already mentioned, the mechanism based on the ‘‘single-
state’’ hypothesis has been suggested to account for the coherent
ongoing activities observed in the primary visual cortex (Goldberg
et al., 2004). In a model adapting this hypothesis, spontaneous
ongoing activities are the results of the dynamics of a single
background state, driven by the cortical noise. In a model based on
the attractor-state hypothesis, on the other hand, the transition
velocity of the patch is constrained by the process of termination of
the up-state.

The synaptic depression and depolarization-dependent potas-
sium channels are possible candidates to trigger the transitions
from the up-states to the down-states, affecting the ongoing
activities in differential manners. Parameter sets (2) and (3) in
Fig. 3(h) suggest that the effect on the traveling velocity is greater
in the case of depolarization-dependent potassium channels than
synaptic depression. In addition, the introduction of depolariza-
tion-dependent potassium channels is found to interfere with the
effect of synaptic depression. In the case of synaptic depression
only (Fig. 3(f)), larger rates of synaptic depression lead to larger
traveling velocities. In contrast, when the synaptic depression and
depolarization-dependent potassium channels coexist, larger rates
of synaptic depression lead to smaller values of traveling velocities
(Fig. 3(g)). The reason is as follows. The potassium current IKNa

increases in proportion to the accumulated number of spikes of
excitatory neurons. The synaptic depression effectively decreases
the amplitude of presynaptic excitatory current in proportion to
the accumulated number of spikes of excitatory presynaptic
neurons. The introduction of synaptic depression makes the
membrane potential and the number of spikes in the up-state
lower because of a decreased influx of current, compared to the
condition of no synaptic depression (Fig. 3(a-2) and (a-3)). A lower
number of spikes per unit time leads to a lower rate of IKNa, making
it take longer to break the balance between excitatory and
inhibitory currents in the membrane potential. As a result, the
synaptic depression diminishes the effect of depolarization-
dependent potassium channel, leading to lower traveling velo-
cities.

There are some ways to test the validity of the current model.
Because of the nature of transitions between the up-states and
down-states in the attractor-state model described here, affecting
the mechanism of termination of the up-states would lead to
corresponding changes in transition velocities. This point could be
checked by changing the parameter involved in synaptic depres-
sion. The application of 4-aminopyridine (4-AP) or a high
concentration of Ca2+ is known to accelerate the short-term
synaptic depression (Varela et al., 1997). Our model predicts that
when the synaptic depression parameter Pv is decreased, the
transition velocity increases in the coexistence of synaptic

depression and depolarization-dependent potassium channels
(Fig. 3(g)), and decreases in the condition of synaptic depression
only (Fig. 3(f)). If there is no change in the transition velocity
corresponding to the modification of synaptic depression, there are
two possible interpretations. The first is that the depolarization-
dependent potassium channels rather than the synaptic depres-
sion are responsible for causing the transition (condition (2) in
Fig. 3(h), with Pv = 0), in which case the attractor-state hypothesis
would be maintained. The second is that mechanisms other than
those based on the attractor-state hypothesis, e.g., the single-state
hypothesis, or the intermittent desuppressed state (Cai et al., 2005)
are relevant to the physiological condition, with the introduction of
synaptic depression not affecting the transition velocities.

In conclusion, the results reported here shed a new light into the
physiological basis of spontaneous neural activities in the cortex.
The ongoing activities sustained by the internal dynamics leads to
a larger degree of freedom for the configuration of the cortical
network involved in various computations. The intrinsic ability of
the local network to undergo transitions between multiple states
on its own might have an important role in salient cognitive
functions, e.g., the memory consolidation process during sleep
(Huber et al., 2004; Stickgold et al., 2000). The results of our
simulation, taken as a whole, suggest that parameters in the
dynamics of the generic network needs to be fine-tuned in order to
reproduce the observed behavior of the biological neural network.
The circuits in the brain therefore is likely to be operating in a
narrow domain in the relevant parameter space, giving important
constraints on cortical dynamics.
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